CHEMISTRY STUDY MATERIALS FOR CLASS 12 (NCERT BASED NOTES OF CHAPTER - 09) GANESH KUMAR DATE:- 15/01/2022

Coordination Compounds

 Werner's coordination theory: Werner was able to explain the nature of bonding in complexes. The postulates of Werner's theory are:

a. Metal shows two different kinds of valencies: primary valence and secondary valence.

Primary valence	Secondary valence
This valence is normally ionizable.	This valence is non – ionizable.
It is equal to positive charge on	The secondary valency equals the
central metal atom.	number of ligand atoms coordinated to
	the metal. It is also called coordination
	number of the metal.
These valencies are satisfied by	It is commonly satisfied by neutral
negatively charged ions.	and negatively charged, sometimes by
	positively charged ligands.
Example: in CrCl ₃ , the primary	
valency is three. It is equal to	
oxidation state of central metal ion.	

- b. The ions/ groups bound by secondary linkages to the metal have characteristic spatial arrangements corresponding to different coordination numbers.
- c. The most common geometrical shapes in coordination compounds are octahedral, square planar and tetrahedral.

- 2. Oxidation number of central atom: The oxidation number of the central atom in a complex is defined as the charge it would carry if all the ligands are removed along with the electron pairs that are shared with the central atom.
- 3. Homoleptic complexes: Those complexes in which metal or ion is coordinate bonded to only one kind of donor atoms. For example: $[Co(NH_3)_6]^{3+}$
- 4. Heteroleptic complexes: Those complexes in which metal or ion is coordinate bonded to more than one kind of donor atoms. For example: [CoCl₂(NH₃)₄]⁺, [Co(NH₃)₅Br]²⁺
- **5. Isomers.** Two or more compounds which have same chemical formula but different arrangement of atoms are called isomers.

6. Types of isomerism:

- a. Structural isomerism
 - i. Linkage isomerism
 - ii. Solvate isomerism or hydrate isomerism
 - iii. Ionisation isomerism
 - iv. Coordination isomerism
- b. Stereoisomerism
 - i. Geometrical isomerism
 - ii. Optical isomerism
- 7. Structural isomerism: This type of isomerism arises due to the difference in structures of coordination compounds. Structural isomerism, or constitutional isomerism, is a form of isomerism in which molecules with the same molecular formula have atoms bonded together in different orders.

- a. Ionisation isomerism: This form of isomerism arises when the counter ion in a complex salt is itself potential ligands and can displace ligands which can then become the counter ion. Example: [Co(NH₃)₅Br] SO₄ and [Co(NH₃)₅ SO₄] Br
- b. Solvate isomerism: It is isomerism in which solvent is involved as ligand. If solvent is water it is called hydrate isomerism, e.g., [Cr(H₂O)₆]Cl₃ and [CrCl₂(H₂O)₄] Cl₂. 2H₂O
- c. Linkage isomerism: Linkage isomerism arises in a coordination compound containing Ambidentate ligands. In the isomerism, a ligand can form linkage with metal through different atoms. Example: [Co(NH₃)₅ONO]Cl₂ and [Co(NH₃)₅NO₂]Cl₂
- d. Coordination isomerism: This type of isomerism arises from the interchange of ligands between cationic and anionic entities of different metal ions present in a complex. Example: [Co(NH₃)₆][Cr(C₂O₄)₃] and [Cr(NH₃)₆][Co(C₂O₄)₃]
- 8. Stereoisomerism: This type of isomerism arises because of different spatial arrangement.
 - a. **Geometrical isomerism:** It arises in heteroleptic complexes due to different possible geometrical arrangements of ligands.
 - b. Optical isomerism: Optical isomers are those isomers which are non super imposable mirror images.